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ABSTRACT

A new ray-tracing computer program is presented as an analysis and design tool for the

development of complex optical systems. The algorithms for the ray-tracing are presented for a

wide variety of optical surface types. Unique methods for the prediction of two-beam interference

patterns are implemented so that amplitude-splitting interferometers can be modeled. Modulest for

line shape analysis and data storage are also described. This program (DART) is validated using

the previously established characteristics of the Middle Ultraviolet Spectral Analysis of Nitrogen

Gasses (MUSTANG) instrument, which has a resclution of 10 A, an X-axis field-of-view of 1.2

milliradians, a Y-axis field-of-view of 37 milliradians, and a 1600 A band-pass. DART is used to

predict the optical characteristics of a new instrument, ISAAC, that is planned for satellite

deployment in 1995. The full wavelength range of ISAAC is 1250 A, and the instantaneous band-

pass is approximately 250 A. The full wavelength coverage is obtained by rotating a reflection

grating in five discreet steps. Based on the DART calculations, the resolution of the ISAAC

instrument will exceed 1.30 A for all bands, with resolutions as low a 1.06 A at the longer

wavelengths. The predicted X-axis field-of-view is 0,5 milliradians and the Y-axis field-of-view is

36 milliradians.
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I. INTRODUCTION

The study of optical systems has been of great interest for several centuries, first for telescopes

and later for everthing from microscopes to lighthouses. Before the advent of fast computers.

optical systems were designed using mathematical formulae that described the optical wavefront

and the changes induced by the various elements in the light path. This method can be very

rigorous or it can make broad assumptions to determine macrosopic properties of a system, but in

the main it is a very tedious and time-consuming task to wade through the required symbol

manipulation. Because of this difficulty, many insightful schemes have been devised to linearize

and simplify the physical characteristics of optical systems so that they can be readily understood

and used without lengthy computation. An alternate method of analyzing these systems is to study

the light ray by ray, by splitting the light entering the system into a finite number of beams, tracing

each of these rays from element to element, and finally reassembling the rays into a single object

that represents the output of the system.

The disadvantage of this approach is that for complex systems, the time involved in completing

the analysis is still very considerable. But since fast computational devices are readily available.

and since computers favor numerical processing over symbol manipulation, the ray approach is a

natural choice for optical system design and analysis. This thesis presents one computational

method ideally suited to this task. Spencer and Mury (1962) outlined the mathematical basis for

tracing skew rays through systems of arbitrary complexity, with four primary goals:

(1) Cylindrical, toric, and conic surfaces must be accommodated with provision for
specifying departures from these forms.

(2) Provision must be made for the arbitrary orientation and positioning of all surfaces
with relative ease of specification.

(3) Diffraction gratings generated by linear or concentric circular ruling motions on any of
the allowed surface types must be accommodated with provision for specifying a variable
ruling separation.
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(4) The procedure should be capable of extension to cover new surface types or new
modes of ruling without major modification.

This thesis uses the methods of Spencer and Muntt as the foundation for applied computational

algorithms, which will be summarized below. This thesis also adds extensively to the earlier work

done by the Naval Research Laboratorv (D. Prinz, private communication, 1991), which

implemented the methods of Spencer and Murt. m a mainframe computing package written in the

FORTRAN language and who clearly spelled out the steps required in the creation of complex

surface solutions.

This work is centered upon creating an interactive tool that combined the physics and modeling

required for complex raytracing with quick processing and useful visual display. capable of not

only tracing solutions but analysis of the generated images as well. This program is written in the

Turbo Pascal language for operation under the Windows shell on a common IBM compatible

desktop computer, and is named DART (Dudley Atkinson Ray Tracer). It is a complete

implementation of the Spencer and Murty formulas, and produces a visual screen display of the

image the modeled optical system should produce. It is very flexible in the number and type of

system inputs allowed, and can produce output data in a variety of formats for use in other

packages. A layout of the modelled system can be drawn by the computer, and the rays that are

traced through the system can be drawn on the layout for detailed analysis. Modules are included

to compute resolution data in the form of full width at half maximum (FWHM), and interference

patterns resulting from two-beam systems can also be generated for display. This implementation

is very flexible and can easily be extended to add any number of analysis tools with only a small

amount of additional programming. After detailing the basic procedures for system aid element

raytracing, and after outlining the specific implementation of these routines, this thesis validates the

models using a known optical instrument: the NPS MUSTANG. This instrument was developed to

study low-intensity ultraviolet emissions from the atmosphere in an attempt to characterize the

ionospheric properties that are important in electromagnetic wave propagation. The MUSTANG
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instrument is described in detail in Chaper IV. Because the optical characteristics of the

MUSTANG are well known (Anderson, 1990. Chase. 1992) and because the instrument uses a

variety of complex optical elements, this instrument provides a unique resource for DART

validation.

The MUSTANG is scheduled for satellite deployment in 1995. The instrument "•ill be changed

significantly for this long-duration mission in order to improve the resolution of the device The

design changes needed for this mission have been modeled and analyzed using DART in order to

predict the impact the changes will have on detector resolution and operation.
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1I. RAY TRACING FUNDAMENTALS

Every optical system shares a few fundamental components. Light of varying \wavelengths

enters the device through an aperture, travels through or is reflected by assorted optical elements.

and finally either exits the device or, more commonly, strikes a detector where it is absorbed and

recorded. In ray tracing algonth&ms, the treatment of the light is discrete. Starting points are

chosen in the aperture plane, and directions of travel are specified for each. Each ray is then

followed through the system, with each element bending the ray in some specific direction

depending upon not only the type of surface intersected, but also the location of the intersection, the

shape of the element at the intersection, and the physical properties of the element itself. The end

of the ray's travel through the system is marked by its intersection Wi, th the image plane, the

element describing the detector in the system. By tracing hundreds or even thousands of rays from

a multitude of aperture points and angles, an image is described at the exit that can be analyzed

and viewed much as one would see detector output on a monitor or chart recorder This approach

is suggested by the particle nature of light and is ideally suited to the table-top digital computer

because it can easily be applied to any number of rays and angles. up to the limits of the memory

available in the system.

A. COORDINATE SYSTEMS AND RAY TRACE INITIALIZATION

1. Coordinate Systems

a Global Coordinates

The use of a consistent coordinate system to describe the placement and orientation of

the system components is crucial for correct simulation. In DART, the aperture may be placed at

any location in a normal x-y-z orthogonal system, and it is oriented such that the y-axis is up. the

z-axis represents a direction normal to the surface of the aperture in the direction of the ray travel,
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with an x-axis satio<', ag the right-hand axis convention. The aperture is always planar, and is

typically pla, with its center at the origin of the global system. Subsequent elements are

specified by their position and by their rotational orientation in the global system

b. Local Coordinates

The formulas describing each individual clement are derived assuminug a coordinate

system in which the z-axis points in the direction of incoming rays. The local coordinate s\ stem

for any element is bound to the surface and is rotated with respect to the global system in order to

properly orient the element. The amount of rotation is specified for each element as three Euler

angles, so named because of their introduction by that famed scientist n his study of dynamics In

particular DART uses a 2-1-3 rotation in which the first rotation is about the -.-axis. The next

rotation is about the new x-axis and then the last rotation is about the new z-axis. w-ith each

rotation occurring after the previous rotation has been completed. Calling the v angle P. the x

angle ax and the z angle y. any set of global coordinates or vectors (x,,.z) may be transformed into

local coordinates (z'.v',z') by applying the commonly used matrix operation given by

x ] [cosacosy +sinctsino siny -cosp3siny -sinaccosy+ cosa sino siny 1x]
S=I co s a sin ' --sin a sinf 3 co s y co s 13co s y - sirn asin y - co s asin f co sy I . (I)

Z'1 L sinoccosf3 sino3 cos(Xcosr• J L_

2. Direction Cosines

After making the determination of the lo,'ation of the ray in both the global and local

systems. it is equally important to specify the direction the ray will travel. This is achieved through

the use of direction cosines. A direction cosine is defined by the cosine of an angle subtended by

the path line from an axis of interest in a plane in which both the line and the axis lie. The

direction of travel can be exactly described by using three values, one for each of the three

orthogonal axes of the coordinate system. Directions cosines are very convenient because just as

position can be converted, a set of direction cosines in the global system (k,l,m) can be converted to

direction cosines in the local coordinate system (k',l',m') using Equation (1)



3. Aperture Ray Generation

Since each ray is treated individually and combined with the other raxs to form an image

only at the end of the process, the first step is to choose the starting point and direction of each ray

in the aperture. The input parameters for the system give the height and width of the aperture in

the global coordinate system, centered about the specified position of the aperture center A

number of points across the aperture are specified along with the angular characteristics of each

point. The point on the aperture can send rays in a variety of directions, so input of the angular

spread about some central angle is allowed, with the number of angular subdivisions in the spread

also specified. This scheme allows for very flexible specification of input to the system, since an%

point on the aperture can be specified with rays emanating at any desired angle. For each point

and each angle six parameters are calculated to characterize the ray, which are the three position

coordinates and the three direction cosines defining the ray. Once the ray has been defined in the

aperture, it is defined, traced, stored and eventually displayed as an output image.

4. General Outline of the Tracing Procedure

For the first element following the aperture, the ray position and directions are transforn,,d

into the element's local coordinate system. The intersection of 'he ray with the element surface is

next calculated as shown below. Once the intercept is known the surface characteristics, and in

some cases the wavelength of the ray, are used to determine the new direction the ray will travel.

The new position and direction are transformed back to the global system and the next element is

called to continue the trace. This process repeats for as many elements as given until the ray

reaches the last element, where the surface intersection point is saved for later display. The next

aperture ray is chosen and the algorithm loops until all of the aperture rays have been traced and

stored. With all of the detector intersection data stored, it is a simple matter to compile the

individual points into a display of the output image, which is necessarily comprised of many such

points. The most difficult task is by far the computation of the ray intersection and the new
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direction for the ray at each element For arbitrary surfaces iterative techniques can in most cases

find the intersection, but for simple surfaces the derivation of closed form solutions is possible and

saves much computational time.

B. ELEMENT ANALYSIS

This treatment of the element analysis assumes that the position and direction of the ra" have

already been transformed into the local coordinate system of the element, and shows the steps

necessary to produce an element intersection and an associated set of direction cosines that can

then be transformed into the local system of the following element.

1. The Most General Intercept Solution

In the local coordinate system, each ray emanates from a point z,) with a direction

cosine (k,l,m) signif6ing the direction of motion. In this discussion. lower case indicates a ray

position, uppercz , indicates a point on the element surface, and upper case with a subscript

denotes a point on the surface where a ray intersects the surface. If s is the distance the rax, wvill

travel from the starting point to the intersection, then the intercept point (X.Y,Z) can be found

using three parametric equations

X, =x + ks (2)
X= Y + Is (3)

Z'= Z + ins (4)

The difficulty lies in the determination of the value s. This value is the key to the solution

and is a fundamental parameter in interference calculations, as shown below. First find the

intersection of the ray with the plane z=O. Calling the distance to this plane s, and the planar

intercepts X, and Y, yields

s= , (5)

X, = x0 + kso (6)
Y, = y0 + Is, (7)
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The surface intercept can now be described through substitution of Equations (5)-(7) into

Equations (2)-(4) to produce Equations (8)-(10) with the assumption that s is noN the distance

from the z=0 plane to the surface.

X, X, + ks (8)
Y. =Y, + Is (9)

Z = $ms (10)

Every surface used in this procedure must be characterized by an equation of the form

F(X,Y,Z)=0. By substitution an equation of one unknown in s is formed that can then be solved b%

an assortment of techniques. For most planar, spherical or other common -cometric shapes this

solution can be found directly, and some of these solutions are presented below. Simple closed-

form solutions are available for the majority of optical elements in common use, but one of the

strengths of this method is that a solution can be found through iterative techniques for any surface

free of discontinuities in the region of the intersection. When outlining these steps, Spencer and

Murty (1962) suggested that the Newton-Raphson iteration technique would be sufficient to

resolve the solution for most cases, but noted that in certain circumstances a solution would not be

found. Specifically, if the ray intersects with grazing incidence or if the surface is nonspherical a

solution may not emerge. Of course if the ray fails to intero,.ct no solution is possible.

2. Intercepts for Special Cases

For common geometric elements like planes, spheres, ellipses and so forth it is more

convenient to derive intersection formulae using Equations (2)-(4), principally because the solution

is not iterative and because the value of s is found directly without further calculation For each

case, Equations (2)-(4) are substituted directly into F(X,YZ)=O and solved for s=s(x0.y 0.z ,kJ.m).

Once the value of s is known, it is a simple matter to calculate the intercept using Equations (2)-

(4). The formulae for calculating the value of s for the common types of optical elements are

presented in the following sections.

8



a. Planar Elements

For any planar element, Z=O in the local coordinate system, so

m

b. Spherical Elements

For a spherical element, it is most desirable to place the sphere such that the origin lies

on the surface of the sphere rather than at the center and since the z-axis points in the direction of

incoming rays, the sphere is centered on the z-axis at a distance equal to the sphere radius. R.

X2 + Y' +(Z - R)' = R- (12)

By substitution and simplification a simple quadratic form for the sphere intercept is

acquired with the normal quadratic constants defined below. In solving for the intercept with a

sphere, two intercepts are possible in general. The first intercept of the ray with a sphere will be at

a convex surface. After entering the sphere, the ray must exit at a concave surface- To solve for

the correct intercept, the proper sign must be chosen in Equation ( 15): for the concave intercept a +

s;gn is used, and the - sign is used for the convex intercept.

b = 2k-x, 21y, + 2m(z0 - R) (13)

c =X + y' + z' - 2z 0 R (14)

s=-b ±2 - c (15)

DART checks for the z-axis direction cosine to determine the sign required. If m is

negative, the concave intercept is found since it is the intercept closest to the element origin.

Similarly, if m is positive, the convex intercept is found to again solve for the intercept closest to

the origin. In this way, the spherical model solves only for solutions in the hemisphere on w hich

the origin lies. By translating the spherical element in the global system, this hemisphere can be

placed to suit any requirement.
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c. Cylindrical Elements

The cylindrical element solution is similar to that of the spherical element The origin is

located on the edge of the cylinder and the cylinder is aligned with its axis parallel to the y-axis.

The formula for a cylinder of radius R is then

X2 + (Z - R)' = R_ (16)

As with the sphere, substitutions yield a quadratic solution s. and the treatment of the

sign convention to find intercepts is again the same.

a = k' + im (17)

b = 2kx, + 2m(z. - R) (18)

c =x + zo - 2 zoR (19)
b I ---

+_1--+- -- c (20)s= 2a a 4

d Eliptical Elements

To specify a three-dimensional elipsoid, the lengths of the major axes must be specified

For simplicity, the axes are aligned in the local system to coincide with the axes of the elipsoid.

The elipsoid is also offset along the z-axis such that the origin lies on the elipsoid surface. In the

formula for this surface, 2a is the x major axis length, 2b for the y-axis, and 2c for the z-axis.

x2  y2  (z- c)2  (21)a + + 7 + c-------1-

As before, s can be found and the correct intercept is found using the appropriate sign convention.

A2 =a-T (22)

B= c- (23)

A, = A2k2 + B212 + m, (24)

B, = A2kx + B,1yO + m(z, - c) (25)

C, = A2xo + BY2o + (z0 - 2c)z 0  (26)

-B, ± B- AC,s =ý (27)
A0
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e. Parabolic Elements

The parabolas used in DART are centered about the local z-axis and are defined b% the

focal lengths of the parabola in the z-x and z-y planes. In the z-x plane, the parabaloid creates a

planar parabola intersection with a focal point f,_ on the z-axis such that 4f, = a Similarly in the z-

y plane the intesecting parabola has a focal point fy on the z-axis such that 4f = b. The formula

for the elliptic paraboloid is then

X! yZ
S+ b = Z (28)a bg

Making the usual substitution results in another quadratic solution for s show•n in

Equation (32), subject to the same conventions for intercept selections, Note that for a paraboloid

with a ray moving in the -z direction a concave solution will always exist, but a convex solution

may not. The reverse is true when the ray is moving in the +z direction. By keeping the sign

convention used for the other elements when solving the quadratic, the solution closest to the origin

is always found, and the other potentially imaginary intersect is ignored. A parabolic trough can

obviously be specified if a or b is large enough to significantly reduce the x or y dependence in the

formula,

k 2  12
A = -_ + - (29)a b

B= ". + yo m(30)
a b 2

S x-,-•° +Y - zo (31)
a b

S [- B ± B2 -AC} (32)

3. Factors Needed To Find Direction Changes After Intersection

The directon the ray takes after intersection is as important for continuing the trace as the

point of intersection found above, and requires more computation. Fundamental in the solution for

the new direction cosines (DC) is r = (K,L,M), the vector normal to the surface at the point of

11



intersection Since F(X,Y,Z) is known for an element, the normal vectors are found through the

calculation of the partial derivatives at the surface intersection

11 -O F ) , O F M " = a ) ,K - - L=-J M iF (33)

Spencer and Murty (1962) outline the steps necessary to determine the new DC in the case

of refractive index change, reflection and refraction. For the first, the value ýt must be knowni.

equal to the ratio of the incident index of refraction to the exiting index of refraction. Reflection

results are found as a subset of the refraction case in which the value of pL is assumed to be unit".

and the signs of the DC are chosen appropriately. For diffraction the terms specific to a grating

surface must be introduced. With these data, a solution for the new DC can be calculated.

4. The Most General Direction Cosine Solutions

These solutions are a restatement of the methods described by Spencer and Murtv

(1962) and use similar nomenclature for consistency, Included here are key points in the

development of the working ray trace algorithm.

a. Refraction

The new DC is described by S' = (k',l',m`). The vector form of Snell's Law can be

resolved through a few substitutions to yield a quadratic equation, which when solved yields the

new DC.

Snell's Law S'x r =S r (34)
S'= pS+rr

F is the multiplier that will be solved quadratically. The three components of (34) are

k'= pk + IK, 1'= ýd + F1, m'= %Lm + IM (35)

Since the sum of the squares of the DC components equal one, F can be found
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r 2 +2af+b =0 (36)

where a =(ikK+lL+mtM (37)
( K2 +12 +M2 )

and b = K 2 +-- (38)

F can be solved by any varietv of techniques, and a solution via the quadratic equation is

usually satisfactory. Once r has been found, substitution into Equation (35) produces the new

DC, which satisfies the definition of a unit vector.

b. Reflection

The equations for the refraction case provide the reflection solution directly. In the

quadratic formula solution, the addition of the square root term signifies the reflection case and the

root subtraction signifies the transmission case. Since for most mirrors 4,= 1, then b=O and a direct

solution is then available for IT

r = -2a (39)

c Grating Characteristics

Gratings present the most challenging computational task, In addition to the variables

needed to define other elements, gratings require a specification of the number of rulings per unit

length, the order of the path to be traced, the wavelength of the incident ray and the vector

p=(u,v,w) describing the direction normal to the ruling surface, all at the point of intersection. The

ruling normal vector, p, is found for two cases by Spencer and Murty.

1) Case I: Parallel Rulings. Parallel rulings are formed by the intersection of a surface

with parallel planes. Since DART allows an element to be rotated in the global system, it is

perfectly general to assume that the lines of intersection run parallel to the y-axis. The plane

spacing d is usually a constant, but may be any function of x. It can be shown that the components

of p and the local spacing d are
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u= +2 (40)

v= = (41)

2) Case I:Circular rulings. Circular rulings are formed by the intersection of

concentric cylinders, lying along the z-axis, with the surface. In this case d is a function of the

distance p from the center, and the resultant equations for p and d are

G ±L12 + 0+M2)f M 2, 2 + (LXj - KY,2 (44)

U 1 [M2X,+ L(LX -KYI)j (45)

v j!M'Y + KiLXj - KYý) (46)
G

w =!(X +(42) 47

G

Spf(P) (48)
X,ux+Yjv

SRefraction Solutionsrfor Gratings

With dhe surface characteristics in hand, a solution of the refracted DC are possible.

The diffaaction may be represented by

S' xr= x + 6(49)

giving S'= + S - Ap + (r (50)

where A = (51)N'd

n is the order number, X is the wavelength, N is the exiting index of refraction and q is the unit

vector parallel to the rulings. Note that for the zero order case, (49) reduces to Snell's Law.

Equation (50) can be expanded to

k'= Pkc - Au + +K

V= ' - Av + UL (52)

wr= pin - Aw + FM
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which once again yields a quadratic equation in F with Equation (37) representing a as before. The

choice of sign in the solution of the quadratic equation is identical to the reflection case above.

r2 + 2aF + b'= 0 (53)

m: - 1 + A2 - 2mA(ku + Iv + mw) (54)
K2 + 12 + M'

Once the value of F is solved, simple substitution into (52) yields the new DC.

5. Direction Cosines in DART

DART uses the above algorithms to determine the new DC. One subroutine could be used

to calculate any of the elements in the program, but this approach would take the same amount of

time for any surface, regardless of the type. In a quest for enhanced speed performance, each

surface type is treated individually with extraneous terms omitted from the calculation and with

appropriate term reductions incorporated. In this way extra data are not computed and the

computational time for a plane surface is ten times less than that required for an elliptical grating,

for example. Furthermore, every element available in DART can be solved without the use of

iterative routines, so straightforward quadratic solutions serve to enhance speed even more than

what would be possible in the general iterative case. On the other hand, DART is fully expandable

and any arbitrary surface can be added to the program if desired.
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MI. DART MODULES

In addition to the raytracing features incorporated in DART, analysis modules are included to

manipulate the output data. DART can store the ray information to user-specified files in text or

binary format. It can perform some routine analyses for the user and can transfer data to other

programs like word processors or spreadsheets. This section describes the modules implemented in

DART.

A. LAYOUT MODULE

DART will draw thl, sysiem to be analyzed if the user selects the Layout feature from the

program menu. The system layout is drawn initially as an isometric projection, but the user can set

the viewing angle to any desired orientation. After the layout is drawn, any rays that are traced

with the program are drawn on the layout, so that the point of impact on any surface can be seen.

Only rays that actually hit a surface within the limits of its mask are drawn. At any time the layout

and any rays that are on the layout can be transferred to a word processor or spreadsheet program

for editing or annotation. Figures 1 and 2 show the isometric and x-z plane views of the

MUSTANG instrument.

B. DATA STORAGE MODULES

Data storage is a primary concern in table-top programming. Each ray must be stored so that

after all of the rays are traced they can be recalled to build an image for display. The reading and

writing of data to the fixed disk drive s the slowest operation in the process and is the determining

factor in the time required to trace a system. To keep the bytes of data to a minimum, each number

is stored using a binary format with ten bytes per number. Ten bytes are used instead of eight or

four so that the precision of the answer will be as high as the PC math processor will allow.
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Figure 1. MUSTANG Layout Using Isometric View. The X-axis is to the right. Y is up and Z is to the left. Th

aperture is shown by the square at the origin, and rays will travel from the aperture along the z-axis.

1/8 m Telescope Mirror Mask Apertwre

Erifiance Slit

/
/

Figure 2. MUSTANG Top View of X-Z Plane. In this view the X-axis runs down while the Z-axis goes to the let

of the aperture, where the rays enter the system. The beam focuses onto the surface of the CCD detector and is a function of wavelength
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Binary storage is much better than text storage with one byte per character in the written number.

but if the user wants to inspect the data with a printout or a text file, binary format is unintelligible.

For this iwason all of the ray tracing is done using binary storage, but data storage to disk after the

tracing is complete can be in either binary or text format. The output image can also be saved to

disk as a bitmap file for later manipulation, editing and printout.

C. FULL WIDTH AT HAY.F MAXIMUM

When analyzing the MUSTANG instrument (see Chapter IV), a parameter of prima", focus

was the detector resolution. Resolution describes the ability of the device to discriminate between

different received wavelengths, and is measured as the wavelength difference required to

distinguish two adjacent lines. In a system that contains gratings, the position of the output image

is a function of wavelength. This is true in the MUSTANG, where the position on the detector

maps directly to the wavelength of the light entering the system. Monochromatic light entering the

system with a wavelength between 1800 and 3400 A makes a line on the detector. Since the lines

have a finite width and a central maximum, there exists a point on either side of the maximum

where the received intensity is one-half of the maximum; the distance from one half-point to the

other is the Full Width at Half Maximum (FWHM). The FWHM is used to determine the

resolution of the instrument.

DART computes the FWHM for any output, along either the detector x or v axis. For this

explanation, we will assume that the FWHM along the x-axis is desired. In this case the user

specifies the minimum and maximum x values for the detector size and the number of bins in the

detector. The data are arranged into a histogram similar to the one shown in Figure 3. The

FWHM routine then uses the value of the maximum bin to locate the two bins nearest one-half the

maximum. Interpolation provides the x-coordinate of the halfway points, and the distance between

these points is the FWHM. This value is immediately displayed to the user.
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Unfortunately, the FWHM routine is not inerrant since the bin width (defined b% the number of

the bins and the range of analysis) will directly affect the interpolated result. Because of this the

routine also dumps the bin values to a text file that can be used in a spreadsheet to plot the number

of hits versus position as shown in Figure 3. This allows the user to measure the FWHM by hand

and to account for irregularities in the plot with any unique method desired.

Distribution of Detector Hits Along X-Axis for 220 nm Light

450
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100-
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0.66 0.665 0.67 0.675 0.68 0.685 0.69 0.695 0.7 0.705 0.71

Detector X-Axis

Figure 3. Example Plot of FWHM Curve

D. INTERFERENCE MODULE

A next-generation interferometer being designed at NPS will use interference patterns to

achieve resolution enhancements at least three, and perhaps four orders of magnitude higher than

possible wit.h the MUSTANG instrument. Construction of these interference patterns is one of the

fundamental features of DART and was one of the primary reasons for its development. Excellent

treatments of interference properties are provided in a number of texts, including Hecht (1990) and

Jenkins & White (1976) and will not be reintroduced here; only the facets of interference pertaining

to its use in DART will be covercd.
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1. Key Ideas For Interference Computation

Huygen's principle states that each point on a wavefront acts as an unique point source, and

that through superposition of waves from an infi:iite number of point sources along the front, the

wave is propagated forward. If some medium is introduced between a source and a target. it is

possible to prevent some or all of these secondary wavefronts from arriviUg at the target. resulting

in a waveform that is not the same as the original. The light intensity at a point on a target will

depend upon the number of wavefront sources blocked by the medium and upon the location of the

blockage. In particular, the target intensity will be a superposition of the rays coming from each

point on the wavefront. If th,; phase of the light from different sources varies (phase is dependent

upon the pathlength traveled) then it is possible that constructive or destructive interference will

occur at points on the target and patterns of interference may be developed. At the edges of a beam

this interference effect is called diffraction, and is the result of path length differences within the

beam. Interference occurs in cases where two or more beams are formed from a single source and

subsequently recombined in such a way that the components of the beams interfere.

Interference is generally created through two mechanisms: wavefront splitting and

amplitude splitting. In wavefront splitting, portions of the original wavefront are used to create

secondary wavefronts that interfere. In amplitude splitting, the whole wavefront is divided into

multiple segments that then travel different path lengths before recombining with interference This

thesis investigates the simulation of interference patterns caused by amplitude splitting devices like

the Michelson interferometer. In the Michelson interferometer, a partially-silvered mirror reflects

half of the incident light, and passes the rest. Each beam then travels a different length before

being returning to the half-silvered mirror, where the beams recombine. The recombined beam

then travels to a detector where the interference is measured as a variation of intensity across the

detector.
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Ideally. an infinite number of points exist on a wavefront. and each point is a source for

another infinite number of rays. A solution involving an infinite number of ra~s is not practical.

but DART uses a discrete method to superimpose the effects of various paths to generate an

interference pattern for the user. A word of caution is in order since DART is not a real phN sical

system. It is easy to create input scenarios that will generate interference patterns in DART. but

that cannot possibly work in practice. One example would be to run rays from the aperture

directly to a detector some distance away from the aperture. If the detector were rotated some

small angle and the output compared for interference with the first case. fringes would be

calculated by the algorithm because the path lengths would be different as the distance from the

axis of rotation was increased, but in reality no interference is possible. The user must ensure that

the model to be simulated is actually capable of generating interference. There are other limitations

to the construction of interference patterns in DART, and these will be treated after the algonthm is

presented.

DART was designed to handle interference patterns resulting from two different paths of

light, like the patterns produced by Young's experiment or by the Michelson interferometer. For

interference to occur in practice, a ray should start at some common point and be subsequently

split into two paths. Somewhere else in the system the split rays recombine and travel toward the

detector, An interference effect occurs when the rays recombine if the phases of the recombining

rays are different and in general, interference will be created at the detector if the split rays fall at

or near the same point on the detector. To simulate an interferometer with DART, it is necessary

to run two systems, each system representing one of the two possible paths in the interferometer.

For the split pat's the aperture data should be identical, with one or several elements in the system

altered to produce a different path that creates interference. Prior to the start of the interference

module, the user should have saved the ray-trace data from each of the optical paths in separate
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data files. In these files three values are stored for every ray that hits the detector; the x-

coordinate, the v-coordinate and the length of the path traveled from the aperture to the target.

2. The Interference Algorithm

The user must specify the size of the interference pattern on a screen of a certain width and

height. This screen is sectioned into a large number of bins of small area which are used to sum

interference hits for the final image. Two data files are specified for use in constructing the

interference pattern. each file containing one of the two paths previously traced for the optical

device causing interference. The data files contain the results of the two individual paths in the

system where the aperture points for each are the same. The interference algorithm takes one

datum point from each file, determines if interference has occured, and increments the correct

detector bin as appropriate. Since the routine loops until all of the data points in the files have

been tested, a description of the analysis for one set of points is sufficient to demonstrate the

computational principle.

Data for the first ray are taken from file I as x 1, y I and L I. The data for the interfering

ray are taken from file 2 as x2, y2, L2. If ray one and ray two fall in the same bin, then their

interferencc is calculated as

Value= 4{Cos[Ž(LI - L2)} (55)

If the rays have a pathlength differing by a multiple of the wavelength X, then they constructively

interfere and 4 is added to the value of the appropriate bin. If they vary by exactly one-half X. they

destructively interfere and nothing is added to the bin value. If the rays do not fall in the same bin.

then each of the two bins are simply incremented by one to signify a hit of a ray.

DART also provides an imaging enhancement to remove some of the visual effects caused

by the discrete nature of the rays. Since any ray can hit in only one bin (pixel), many pixels may

not contain ray hits. These pixels will stand out in sharp contrast to the neighboring pixels which
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will show hits. At the same time, some bins will show no hits when in fact hits did occur that

resulted in destructive interference. To smooth these effects a box filter is applied, in which every

bin is calculated as the average of the hits in that bin and the hits in all neighboring bins. This

technique tends to smooth out the rough edges from discretization while retaining the highs and

lows of interference. The user has the option to engage this filter or to ignore it.

3. Limitations of the Interference Routine

DART calculates the interference resulting from a pair of beams split somewhere in the

optical path. Systems utilizing multiple-path interference, i.e., Fabry-Perot interferometers, cannot

be modeled because DART cannot synthesize the very large number of interfering rays. The

program would need significant alteration before these systems could be accomodated.

The interference pattern displayed to the user depends upon the number of pixels available

to the image. When the user sets the size of the image, a fixed number of pixels are available to

show that image. If the number of rays is small compared to the number of pixels, the resultant

"hits" may be spread out so far that recognition of an interference pattern is difficult or impossible.

Conversely, if the number of pixels available is very small, which occurs when the size of the given

detector is much larger than the image, the rays may saturate a few pixels and not generate a

distinguishable pattern. A pattern also will not be recognizable if the high and low intensity points

of the pattern are separated by a distance less than a few pixels, simply because the resolution of

the display will not show any difference between the two points. These resolution pitfalls can be

circumvented by the user through a thoughtful choice of image size and ray density.

Another striking effect is caused by the process or stepping in a linear fashion through the

aperture points to get new rays for tracing. This means that all of the rays in the aperture are

equally spaced according to the input specification. Since the detector intercept points for a

linearly stepped aperture also tend to be linearly stepped, moird patterns are developed that run the

length of the output image. Because interference is recognized in the display as differences in the
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pixel intensity across the image, the moire pattern could be misinterpreted as interference in the

output where in fact none may exist. To avoid this problem, the user may select a scattered

aperture input set. The way this works is that after each linear step to the next aperture point or

angle, a small offset is added using a pseudorandom number supplied by the computer's random

number generator. In this manner the output pattern is randnmized and the output moire patterns

are destroved. The random nature of the image allows the user to recognize anomalies as part of

the analyzed system, and to have faith that the display itself is not the cause of the pattern.
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IV. ANALYSIS OF THE MUSTANG

The NPS MUSTANG is an instrument used to passively measure emissions from ionospheric

atomic and molecular species. This thesis uses the MUSTANG as a benchmark for model

verification, since the resolution, frequency response and field-of-view specifications for the

instrument are well-known (Anderson. 1990; Chase, 1992). It was also analyzed for significant

design changes that arc being made for a slated satellite deployment in early 1995.

A. DESCRIPTION OF MUSTANG

The MUSTANG (Middle Ultraviolet SpecTrographic Analysis of Nitrogen Gasses) instrument

has twice been successfully launched using Black Brant, Terrier boosted sounding rockets at the

"White Sands Missile Range in conjunction with the Naval Research Laboratory and NASA. The

purpose of the experiment is to study the emissions of atomic and moiccular species naturally

present in the ionosphere so that the processes governing their creation and concentration can be

modeled and eventually predicted. If the ionosphere can be accurately predicted. many systems can

be developed in communications and surveillance areas to take advantage of the interaction

between electromagnetic phenomena and the atmosphere.

Figure 4 shows the optical layout of the MUSTANG. Light enters the aperture of the device

and travels through the telescope section to a spherical mirror with a 1/8-meter focal length.

Baffles in the telescope assembly stop light that would otherwise reflect from the inner surfaces of

the telescope. The mirror focuses the light such that the beam is narrowest at the entrance slit.

which cuts off the edges of the beam and acts to restrict the field-of-view of the instrument even

more than the baffles do. A smaller slit in general yields a smaller field-of-view but at the same

time it reduces the amount of light that reaches the detector. If the field-of-view is constrained too

much, the small amount of light that hits the detector may be unmeasurable. As the reflected light
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expands after passing the slit it strikes the second 1/8-meter mirror which collimates the beam and

redirects it onto the plane grating. The first order grating reflection is again reflected by the 1/8-

meter spherical mirror and is focused to strike the linear array photodiode detector where the light

is collected. In the MUSTANG, the grating is ruled at 1200 lines/mm so that a band of

wavelengths 1600 A wide will strike the active portion of the detector. The detector can collect a

beam 2.5 cm wide and 0.5 cm high with 512 bins along the wide dimension. The grating is rotated

so that the rays hitting the detector correspond to a low wavelength of 1800 A at the top of the

detector and to a high wavelength of 3400 A at the lower side of the detector. The received photon

intensity at each bin is electronically converted to a proportional signal that can then be transferred

by the rocket telemetry system to a recorder that in real time stores the information generated by

the instrument. In this way continuous ionospheric emission data can be obtained for a fifteen

minute flight to a peak altitude of about 320 km, with the time of receipt directly correlatable to the

altitude of the measurement.

S/8 Ue••, spherioI ,iArr Aed-ure(-

Entrance Slit

,ete •o, Arssembr.

Pla~ne Crating Mirror --

Figure 4. MUSTANG Instrument
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Other students are analyzing the data generated by the previous two launches. This thesis uses

the MUSTANG as a yardstick against which DART can be measured. The calibration of the

MUSTANG yielded values of system performance that included the field-of-view of the device, the

resolution of the detector. and the wavelength calibration. DART independently calculates all of

the parameters.

B. ANALYTICAL RESULTS

1. Line Placement

Gratings will reflect light in several directions, with the diffraction angle dependent upon

the wavelength of the incident light, the ruling density and the ruling direction. This property is

fundamental to the action of the MUSTANG, which is tuned so that only light in a fixed range of

wavelengths will be properly reflected to hit the detector, and also so that the wavelength received

can be directly mapped to the physical location of the receiving bin. Table I shows the element

data used for the analysis of the MUSTANG properties in the order in which the light strikes the

objects. The aperture was specified as a square centered about the origin with width and height of

2.66 cm; the positive Z-axis is normal to the center of the aperture.

Table 1. MUSTANG ELEMENT PLACEMENT IN ORDER OF IMPACT

Position of Center (cm) Rotation Angles (deg.) Mask Info (cm)
Type X Y z X Y z Width Height

Telescope Mask 0.000 0.000 21.194 0.000 0.000 0.000 2.500 2.500
Spherical Mirror 0.000 0.000 36.195 0.000 169.855 0.000 2.500 2.500
Entrance Slit 4.335 0.000 24.471 0.000 -18.872 0.000 0.014 0.500
Ebert Mirror 11.288 0,000 13.713 0.000 -21.393 0.000 12.000 2.500
Plane Grating 6.795 0.000 23.479 0.000 167,500 0.000 2.500 2.500
Ebert Mirror 11.288 0.000 13.713 0.000 -21.393 0.000 12.000 2.500
Detector Surface 9.271 0.000 26.340 0.000 161.128 0.000 3.000 0.500

The measurements of Table 1 are made with a few coordinate system assumptions.

Referring back to Figure 2, the center line of the telescope section is taken as the Z-axis, with
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travel to the left indicating a positive direction. The X-axis is chosen down, so that in a right

handed convention the Y-axis is out of the page. The origin is placed at the intersection of the

aperture plane with the Z-axis., and all angles are measured so that a positive rotation executes a

right handed turn about an axis. Each wavelength creates a separate line at the detector because

the grating is ruled in the Y-direction, such that reflection is a function of wavelength in the X-Z

plane but not in the Y-direction; any ray moved vertically remains unaffected by the grating.

Figure 5 shows the line produced by a 2600 A source.
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Figure 5. MUSTANG 2600 A Line by DART Analysis

The grating element is mounted so that it can be rotated about its Y-axis, allowing the lines

created on the detector to be moved from one location to another simply by turning the grating a

small amount. The values of Table I were used by DART along with the physical characteristics

of the grating and spherical mirrors to find where various wavelength sources would strike the

detector. Using the left and right bounds of the output image as the limits of the line, the FWHM
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module was used with 100 bins along the X-axis to create a FWHM plot like Figure 1. The

maximum point was estimated and from this the half-maximum value was determined. The center

of the line along the X-axis was taken as the midpoint between the two half-maximum points.

Figure 6 is the result of this analysis for nine different wavelengths.
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Figure 6. MUSTANG Line Placement For Varying Wavelengths

The linear response shown in Figure 6 is due to the linear ruling density on the grating and

the small difference between the wavelengths in the range of interest. It matches the line placement

that was measured by Anderson (1990).

2. Detector Resolution

Another parameter of great interest is the resolution of the detector. Resolution in this

application is defined as the wavelength difference required to clearly differentiate between

adjacent lines on the detector, and is found as the wavelength separation such that the FWHM

points of adjacent lines just overlap. To determine the resolution of the detector optics, the line
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data for some representative cases was plotted as a FWHM curve as done for the previous case of

the center determination. The wavelength dispersion was calculated using the difference between

the maximum and minimum wavelengths divided by the separation between the minimum and

maximum X-axis intercepts. This value was multiplied by the FWHM distance for each individual

wavelength to produce the resolution value at that wavelength. Table 2 lists the resolution results.

Table 2. MUSTANG LINE RESOLUTION AS A FUNCTION OF WAVELENGTH

IWavelength (A) 1800 2000 2200 2400 2600I 2800 3000 3200 3400
Resolution (A) 10.0 10.0 9.9 10.3 10.0 10.2 10.4 10.3 10.2

The slight variation in resolution with wavelength derives from the discontinuous nature of

the FWHM plot from which the linewidth data is taken. The key result is that the MUSTNG

resolution over the range of interest is approximately 10 angstroms, which is very close to the 10.6

A value determined experimentally by Anderson (1990).

3. Field-of-View

The field-of-view of the instrument describes how far from the principal axis the light

source may be while still producing an image on the detector. This parame is critically

important for the proper analysis of the experiment data, since the detector measures a portion of

all of the light directed toward it in its field-of-view. The field-of-view is needed first for the

instrument calibration in the laboratory with a known light source so that the detector response can

be established. The field of view is then used with the calibration data for post-experiment analysis

of the data.

The field of view for the MUSTANG was determined experimentally along the Y-axis by

Anderson (1990). Two methods are possible to compute the field of view using the program:

rotate the instrument or move the initial ray source. Moving the instrument in DART would

require rotating and correctly translating every element in the system to the new position and would
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be very time-consuming and error-prone. It is possible to specife in the program input thc exact

angle that the aperture rays initially travel, so in this way perfectly collimated rays are injected into

the instrument at precisely controlled angles, without any limit set by the resolution of a turntable

or micrometer.

For the Y-axis the field-of-view is much larger than that of the X-axis, since the entrance

slit is much thinner in X than it is in Y. The Y-axis field of view was tested for angles that ranged

from -25 to +25 milliradians. 10,000 rays arranged to uniformly fill the aperture and with a

direction normal to the aperture plane were input to the program, causing 5173 rays to hit the

detector. To determine the field-of-view the angle was repeatedly changed and the number of hits

recorded at the new angles. By comparing the number of hits at various angles, the field-of-view

can be shown. Figure 9 is a plot of detector hits as a function of incidence angle. This curve is

consistent with the experimental determination of Anderson (1990, pg. 53). Anderson found a Y-

axis field-of-view of about 35 mrad and estimated an X-axis field-of-view of less than 7 mrad.

With DART the Y-axis field-of-view was about 34 mrad and the X-axis field-of-view is about 4

mrad.

Unfortunately, the X-axis field of view was too small to be measured using available

laboratory equipment, but it was estimated less than 0.08 degrees (Anderson. 1990). DART can

easily solve for extremely small angles, and through the same method applied for the Y-axis case

the X-axis field of view is presented as Figure 10. The field of view along the X-axis has a

complex shape with a very sharp peak at the center and that decreases much faster in positive

angles than in negative angles. This feature is due to the spherical aberration resulting from the

use of a tilted spherical mirror to divert the light through the entrance slit. If the field-of-view is

taken as the point where the number of hits is one-half of the maximum, the field of view along the

X-axis is 0.07 degrees.
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V. MUSTANG ON ORBIT (ISAAC)

A new version of the MUSTANG instrument will be placed on orbit sometime in 1995 in order

to study the ionosphere for an extended period of time (Cleary. 1992)_ The satellite that will be

used for this experiment is the Air Force sponsored ARGOS science satellite. The purpose of

ARGOS is to cam' a number of advanced scientific experiments on orbit for a period of at least

one year, and the MUSTANG is an integral part of this projec' The current instrument could be

modified with the correct telemetry electronics to support the satellite bus requirements. but since

the experiment is a long-terna project some significant design changes are worthwhile: DART has

been used to quantify the effect of these changes. The new instrument will be called ISAAC.

A. DESIGN CHANGES

The first goal of the design change is to enhance the detector resolution. The principal

determinants of resolution are line-width and line separation. The first design change was to raise

the number of rulings on the grating from 1200 to 4800 lines/mnm. This has the effect of splitting

the 1800-3400 A light departing the grating into an angle at least four times larger than before.

The next design change seeks to reduce the line-width by narrowing the entrance slit to one-half of

the original width. The third change incorporates an off-axis parabolic mirror element to replace

the spherical mirror element in the telescope assembly. These changes have already been ordered

from the manufacturer. A fourth change is recommended to accomodate the combination of the

other three and is described after laying the foundation for the change.

1. The New Grating

For ray components in the direction perpendicular to the ruling direction, the linearly ruled

reflection grating used in MUSTANG obeys the formula

sin(0) - sin(i) = mL (56)
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where L is the number of lines on the grating per unit length, X is the wavelength of the incident

light, m is the order of the reflection, i is the angle between the incident ray and the surface normal.

and 0 is the angle between the departing ray and the surface normal. The component of a ray

traveling parallel to the rulings is simply reflected with an departure angle equal to the incidence

angle. This instrument uses only the first-order path. so m is equal to one.

ISAAC incorporates a 4800 line/mnm reflection grating instead of a 1200 line/mm grating.

For 1800 A light and i=0. the MUSTANG grating departure angle 0 is 12.5', For the same

wavelength in ISAAC the departure angle 0 is 35.20, A similar increase in departure angle occurs

for the 3400 A case. MUSTANG was designed so that the 1800 A to 3400 A band fit on the

detector in its entirety. For ISAAC to cover this band of wavelengths the grating must be rotated

to correctly position the wavelengths on the detector, and the increased angular spread of the

wavelengths with the new grating mandates the use of multiple grating positions.

At first glance, one might try to split the 1800-3400 A band onto the detector with four

different positions of the grating, since quadrupling the lines would make a band roughly four times

wider. But this does not work because the incidence angle of the grating is changed by its rotation.

such that the band grows even wider at the larger angles. To attain the range of the original

MUSTANG seven bands would be required. The higher the band, the more the grating must be

turned and the smaller the range of wavelengths included in the band, so much so that the last two

bands together would only be 350 A wide. To retain simplicity while enhancing performance. five

bands are chosen to cover the range from 1800 to 3055 angstroms, each band operating wvith a

fixed rotational angle of the grating. Note that when the entrance slit is narrowed and the parabolic

mirror is substituted later, the grating positions and the bands do not change, since the band

placement is required as a result of the grating change. Table 3 lists the characteristics of these

bands.
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Table 3. MUSTANG CHARACTERISTICS WITH 4800 LINES/MM GRATING,
SPHERICAL TELESCOPE MIRROR AND 14 MICRON SLIT.

Band Grating le Wavelengt (A) Position (cm) Resolution (A)1
1800 1.13 2.2

1 186.65" 1950 0.01 2.2
2100 -1.23 2.4
2100 1.18 2.1

2 191.50 2240 0.04 2.2
2380 -1.21 2.3
2380 1.14 1.9

3 196. 10 2505 0.05 2.1
2630 -1.18 2.3
2630 1.10 1.8

4 200.40 2740 0.04 2.0
2850 -1.16 2.2
2850 1.14 1.7

5 204.60 2952 0.05 1.9
3055 -1.22 2.2

Although a price must be paid for the added complexity, the new grating clearly reduces the

instrument resolution by at least a factor of four over the nominal MUSTANG resolution of 10 A,

and in places by a factor of five. These data illustrate two trends. The first trend is that within

each band the resolution worsens as the wavelength is increased. To show this effect. Equation 56

is differentiated with respect to 0 to yield
1

dX = -cos(0)dO (57)
mL

Note that resolution is determined by the separation required to resolve adjacent wavelengths. As

the wavelength increases, Equation 56 shows that the angle 0 must also increase. If 0 rises, then

Equation 57 shows that the change of wavelength with 0 is lowered, so the separation between

adjacent wavelengths is reduced. Resolution is worsened by an increase in wavelength for a fixed

grating position.

The second trend is for the resolution to improve from low bands to high bands. This is a

direct result of the increased angular spread that results from using higher wavelength and higher
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incidence angles. Because a smaller range of wavelengths fit on the detector in a higher band than

fit in a lower band. the separation between wavelengths is inherently larger. and the resolution is

smaller.

2. The Narrower Slit

The slit width constrains the field-of-view and the resultant line width at the detector by

cropping the rays that tend to enlarge the beam. By cutting the slit in half. many more rays are

cropped and the line width narrows. The price paid for this enhancement is intensity. If more light

is prevented from reaching the detector, then the detector output signal is reduced and the

instrument will be less effective in low light situations. If the 1800 A line in Band I is analyzed

with a slit 0.007 cm wide instead of the earlier 0.014 cm, the resolution improves from 2 17

angstroms to 1.594 angstroms. This 27% improvement is offset by a 51% loss of intensity, but

because resolution is more critical than intensity, the narrower slit is a good choice. It is assumed

that the other bands and wavelengths would change in a similar. if not identical fashion.

3. The Parabolic Telescope Mirror

Because the narrower slit cuts out such a large percentage of the available light, other

avenues to raise the amount of light passing the slit were explored. Replacing the spherical

telescope mirror with an off-axis parabolic mirror element focuses a great deal more light through

the slit and subsequently raises the intensity of light at the detector. Table 4 shows the elements

and their orientation in the MUSTANG after all of these changes have been incorporated.

Resolution values and field-of-view measurements are presented in the detailed analysis below.

The plane mask in front of the parabolic element is used to create an off-axis parabolic

element. Element areas must be centered about their local origins, so the parabolic element must

be rather large to cover the area of the telescope mirror. By putting a square planar element in

front of the active area of the parabolic to screen out any rays that would h't other parts of the

mirror an off-axis element is formed.
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Table 4. ISAAC CHARACTERISTICS WITH 4800 LINES/MM GRATING,
PARABOLIC TELESCOPE MIRROR AND 7 MICRON SLIT

Position of Center (cm) Rotation Angles (dcg.) Mask Info (cm)
Type X Y Z X Y Z Width Height
Plane Surface 0.000 0.000 21.194 0,000 0.000 0,000 2.500 2500
Plane Mask 0.000 0.000 35.867 0.000 0.000 0.000 2.500 2.500
Parabolic Mirror 4.335 0.000 37,336 0.000 180.000 0.000 20000 20.000
Plane Surface 4.335 0.000 24.471 0.000 -18.872 0-000 0.007 0.500
Spherical Mirror 11.288 0.000 13.713 0,000 -21.458 0.000 12.000 2.500
Plane Grating 6.795 0.000 23.479 0.000 186.65 0o000 2.500 2.500
Spherical Mirror 11.288 0.000 13.713 0.000 -21.458 0.000 12.000 2.500
Plane Surface 9.271 0.000 26.340 0.000 161.128 0.000 3.000 0.500

4. The Grating Adjustment

In the course of instrument analysis, it became clear that not all of the light that was

passing the slit was reaching the detector. Since the slit should be the last restriction in the path of

a ray, something after the slit was not working with all of the light. The reason for the loss of light

was the grating itself A 2.5 cm wide grating was more than sufficient for the original

MUSTANG, since the slit and the series of spherical mirrors that preceded it in the optical path

created a beam in all respects smaller than the grating. Because the parabolic mirror in ISAAC

focuses a bigger input beam through the slit, the beam also expands to a larger width after passing

it, so much so that the beam reaching the grating is larger than the grating itself. The requirement

that the grating be tilted to accomodate varying wavelengths exacerbated the problem since the

area of grating perpendicular to the beam cross-section was also reduced. The analysis shows that

a larger grating is required to obtain the full benefit of the instrument optimization.
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B. DETAILED ANALYSIS

For ISAAC, line placement describes the physical mapping of a wavelength to a particular

position on the detector in a given band. Line placement and detector resolution go hand-in-hand

for the new instrument so these analyses are presented first, followed by the analysis of resolution

and field-of-view. Each band is covered in detail with the grating, entrance slit. and parabolic

mirror changes incorporated. The field-of-view for the instrument should be the same regardless of

wavelength or band, since the parabolic mirror and the slit determine the field-of-view, but because

of the 2.5 cm grating size the resolution and the field-of-view are affected. The analysis shows the

figures for the 2.5 cm grating case and shows the benefits of changing the ISAAC grating to one

3.5 cm wide.
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Figure 11. Line Placement in ISAAC Bands. Five

points from each band show the wavelength response listed in Table 3.
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1. Line Placement

The positioning of the lines in the bands shown in Table 3 remains unaltered by changing

the grating size from 2.5 to 315 cm long. since the parabolic mirror and entrance slit changes do not

affect the incidence angle of rays on the grating in any significant way. The band widths and

angles were defined to allow the grating mirror to be stepped in discrete increments using. for

instance, a cam assembly on a stepping motor. This way the line position on the detector can be

more easily calibrated since the position is not a function of time, but of stepping motor angle. The

bands are also designed so that the limiting wavelengths are not at the edges of the detector active

region. This creates band overlap so that the lines of adjacent regions can be compared and so that

the bands can be changed by small amounts to account for pixel failure or other reasons. Figure

11 shows the line placement in each band

2. Resolution Measurements

To determine the resolution, the same procedure used earlier for the original MUSTANG

was conducted. first for the 2.5 cm grating and then for the 3.5 cm grating. The FWHM plots for

the band endpoints were used to determine the precise line position of the band limits. From this a

dispersion factor was calculated. The FWHM's for three other lines in each band were computed

to determine the linewidths. and the resolution was found as the product of the linecidth and the

dispersion factor. Listed in Table 5 are the average resolutions for each of the five bands. with

both the small and the large gratings.

The larger grating makes a significant difference in the resolution of the instrument because

a lot of the light does not reach the detector with the small grating. Less light at the detector causes

the peak to be smaller, and concomitantly forces the FWHM to be broader since the total width of

the line remains relatively unchanged. With a grating capable of reflecting all of the light that

passes the slit, overall performance is significantly improved.
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Table S. IMPROVED MUSTANG RESOLUTION VALUES (ISAAC INSTRUMENT

WITH A 4800 LINES/MM GRATING. A PARABOLIC TELESCOPE MIRROR. AND A 7 MICRON SLIT).

Minimum Maximum 1 Resolution with [Resolution with
Band Wavelength (A) Wavelength (A) 2.5 cm Grating (A) 3.5 cm Grating (A)

1 1800 2100 1.368 1.285
2 2100 2380 1.241 1.185
3 2380 2630 1.144 1.100
4 2630 2850 1.116 1.069

1 2850 3055 1.083 1.057

3. Field-of-View

The field-of-view for ISAAC is significantly smaller than for MUSTANG, at least in the X

direction. The new field-of-view along the X-axis is 0.5 milliradians compared to the earlier 1.2

milliradians. The change in the Y-axis field-of-view from 37 to 36 milliradians is a small one

created by the enhanced focusing power of the parabolic mirror. The change along the X-axis is

striking, since it is a coupling of effects from the parabolic mirror and the smaller entrance slit.

While the field-of-view is the same for both the 2.5 cm and the 3.5 cm cases, the intensity or

number of hits upon the detector is clearly different, so the field-of-view curves provide a good

mechanism for demonstrating the effect of the grating size.

The field-of-view should be independent of the grating size, but the intensity of light hitting

the detector can obviously be affected if the grating is too small. Figures 12 and 13 show the X-

axis and Y-axis fields-of-view for the instrument with the 2.5 cm grating and a 2500 A Band 3

source. Figures 14 and 15 show the fields-of-view for the 3000 A Band 5 line. For the band 5

case, with the same number of rays passing the slit, the number of hits upon the detector at every

angle is reduced by approximately 5%. This can be shown in the following way. When the grating

is rotated to accomodate Band 5 its area perpendicular to the beam is reduced and if the beam is

too large it will be truncated at the edges of the grating; this is certainly what occurs for the 2.5 cm

grating, as evidenced by the difference in detector hits between the two cases.
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A bigger grating solves this problem. and Figures 16 and 17 show the number of rays

hitting the detector for the 3.5 cm grating. No matter what band is used. • ith a 3 5 cm grating the

number of hits is independent of wavelength as it should be. When the grating is enlarged. all -f

the light passing through the slit reaches the detector. The intensity of the received light is

significantly higher than the 2.5 cm grating case, as much as 18% higher for the band five case and

14% higher for the band three case.
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Figure 12. X-Axis Field-of-View for ISAAC Band 3. 2500 A with
the 2.5 cm Grating. The width of the envelope is 0.5 mrad.

8000 -7

70004-'A *
4 6000

2000

4000 1

S2o200

10

-20 -15 -to -5 0 5 10 15 20

Incidence Angle (milliradians)

Figure 13. Y-Axis Field-of-View for ISAAC Band 3, 2500 A with
the 2.5 cm Grating. The width of the envelope is 36 mrad.

42



7000 -

56000 7

5i.

4 500 -

S3000 

-

2000

1000 +

0 .- ,

J0 3 -02 -0 1 0 0 u2 0 3

Incidmece Angle (n'ulhradians)

Figure 14. X-Axis Field-of-View for ISAAC Band 5, 3000 A With
the 2.5 cm Grating. The width of the envelope is 0.5 mrad.

8000 -

7000

,6000 +

<5000 t
_a

40001-

; 3000

2000

I0o

-20 -15 .10 -5 0 5 10 1s 20

rncidmce Angle (milhiradians)

Figure 15. Y-Axis Field-of-View for ISAAC Band 5, 3000 A with
the 2.5 cm Grating. The width of the envelope is 36 mrad.
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Figure 16. X-Axis Field-of-View for All ISAAC Bands with
the 3.5 cm Grating. The width of the envelope is 0.5 mrad.
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VI. CONCLUSIONS AND RECOMMENDATIONS

DART is a versatile and user-friendly program that allows computer simulation of a wide

varietvy of optical systems. The system input is very flexible as any number of rays or ray

directions can be specified. The relative intensities of light at different wavelengths (i.e., the

spectral irradiance) can be specified to simulate assorted wavelength profiles, like sodium lamps or

ionospheric emissions. It can produce output for line profiles, intensity patterns, and interference

determination. DART will draw the layout of the system under study and show on the layout the

traces of the system rays. The output images, layouts and interference patterns can all be saved

and used in other applications like word processors or spreadsheets. The program operates under

the Windows platform on the IBM PC, so it is accessible to a large number of users who can easily

learn to use DART since they will have already mastered the mechanics of the graphical interface.

DART accurately models the NPS MUSTANG instrument and provides new insight into

parameters like the X-axis field-of-view that could not be accurately measured because of the

extremely small values involved. Since DART has been shown to accurately model MUS'"NG. it

is a natural choice for analysis of the new ISAAC instrument. Design changes for ISAAC have

been made that show that with minor alterations the MUSTANG instrument can be modified for

satellite deployment and will achieve line resolutions 4 to 5 times better than MUSTANG. DART

has shown that the use of a 2.5 cm square grating element in ISAAC will cause a partial loss of

light at longer wavelengths, but that the loss is less than 15%. Since the detector response at

assorted wavelengths is carefully calibrated prior to launch, this intensity loss can be accounted for

through calibration. The extra expense requited to modify the size of the grating is therefore not

warranted.

DART is now being used to explore new interferometer designs. Work is underway at NPS to

design another instrument that will measure the ionospheric emissions currently measured with
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MUSTANG, but with a resolution improvement of 3 to 4 orders of magnitude (Clearn, 1992), The

interferometer design employs spatial heterodyne techniques to generate interference. It uses a

grating to split the beam into two beams which are then reflected back to the grating to recombine.

Interference occurs because the returning beams arrive at different angles normal to the grating

surface, so that the phase difference between the returning beams at the grating vanres with the

distance across the surface. DART can correctly model the performance of these interferometers.

since the system is an amplitude-splitting two beam system. DART is also useful in this work

because complex wavelength distributions may be input to DART for solution: these solutions can

be used to simulate actual system output so that analysis routines may be developed for the actual

instrument.

Future research is needed to expand the capabilities of DART to include more surface types

and to implement more analysis tools in the program. The modular design of the DART

algorithms facilitates the creation of new surfaces and tools. Research is also needed for the

development of the new interferometer, specifically for system modeling, prototype building,

instrument electronic interface design, detector calibration and data analysis.
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